Wilkinson Microwave Anisotropy Probe

Wilkinson Microwave Anisotropy Probe
General information
NSSDC ID 2001-027A
Organization NASA
Launch date 30 June 2001, 19:46 UTC
Launched from Cape Canaveral Air Force Station
Launch vehicle Delta II 7425-10
Mission length 10 years, 7 months and 18 days elapsed
Mass 840 kg
Type of orbit Lissajous orbit
Location L2
Instruments
K-band 23 GHz 52.8 MOA beam
Ka-band 33 GHz 39.6 MOA beam
Q-band 41 GHz 30.6 MOA beam
V-band 61 GHz 21 MOA beam
W-band 94 GHz 13.2 MOA beam
Website http://map.gsfc.nasa.gov
References: [1][2][3]

The Wilkinson Microwave Anisotropy Probe (WMAP) — also known as the Microwave Anisotropy Probe (MAP), and Explorer 80 — is a spacecraft which measures differences in the temperature of the Big Bang's remnant radiant heat — the Cosmic Microwave Background Radiation — across the full sky.[4][5] Headed by Professor Charles L. Bennett, Johns Hopkins University, the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University.[6] The WMAP spacecraft was launched on 30 June 2001, at 19:46:46 GDT, from Florida. The WMAP mission succeeds the COBE space mission and was the second medium-class (MIDEX) spacecraft of the Explorer program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson (1935–2002),[6] who had been a member of the mission's science team.

WMAP's measurements played the key role in establishing the current Standard Model of Cosmology. WMAP data are very well fit by a universe that is dominated by dark energy in the form of a cosmological constant. Other cosmological data are also consistent, and together tightly constrain the Model. In this Lambda-CDM model of the universe, the age of the universe is 13.75 ± 0.11 billion years. The WMAP mission's determination of the age of the universe to better than 1% precision was recognized by the Guinness Book of World Records. The current expansion rate of the universe is (see Hubble constant) of 70.5 ± 1.3 km·s−1·Mpc−1. The content of the universe presently consists of 4.56%  ±  0.15% ordinary baryonic matter; 22.8%  ±  1.3% Cold dark matter (CDM) that neither emits nor absorbs light; and 72.6%  ±  1.5% of dark energy in the form of a cosmological constant that accelerates the expansion of the universe. Less than 1% of the current contents of the universe is in neutrinos, but WMAP's measurements have found, for the first time in 2008, that the data prefers the existence of a cosmic neutrino background[7] with an effective number of neutrino flavors of 4.4  ±  1.5, consistent with the expectation of 3.06. The contents point to a "flat" Euclidean flat geometry, with the ratio of the energy density in curvature to the critical density 0.0179 < Ωk <0.0081 (95%CL). The WMAP measurements also support the cosmic inflation paradigm in several ways, including the flatness measurement.

According to Science magazine, the WMAP was the Breakthrough of the Year for 2003.[8] This mission's results papers were first and second in the "Super Hot Papers in Science Since 2003" list.[9] Of the all-time most referenced papers in physics and astronomy in the SPIRES database, only three have been published since 2000, and all three are WMAP publications. On May 27, 2010, it was announced that Bennett, Lyman A. Page, Jr., and David N. Spergel, the latter both of Princeton University, would share the 2010 Shaw Prize in astronomy for their work on WMAP.[10]

As of October 2010, the WMAP spacecraft is in a graveyard orbit after 9 years of operations.[11] The Astronomy and Physics Senior Review panel at NASA Headquarters has endorsed a total of 9 years of WMAP operations, through September 2010.[3] All WMAP data are released to the public and have been subject to careful scrutiny.

Some aspects of the data are statistically unusual for the Standard Model of Cosmology. For example, the greatest angular-scale measurements, the quadrupole moment, is somewhat smaller than the Model would predict, but this discrepancy is not highly significant. A large cold spot and other features of the data are more statistically significant, and research continues into these.

Contents

Objectives

The WMAP objective is to measure the temperature differences in the Cosmic Microwave Background (CMB) radiation. The anisotropies then are used to measure the universe's geometry, content, and evolution; and to test the Big Bang model, and the cosmic inflation theory.[1] For that, the mission is creating a full-sky map of the CMB, with a 13 arcminute resolution via multi-frequency observation. The map requires the fewest systematic errors, no correlated pixel noise, and accurate calibration, to ensure angular-scale accuracy greater than its resolution.[1] The map contains 3,145,728 pixels, and uses the HEALPix scheme to pixelize the sphere.[12] The telescope also measures the CMB's E-mode polarization,[1] and foreground polarization;[7] its life is 27 months; 3 to reach the L2 position, 2 years of observation.[1]

Development

The MAP mission was proposed to NASA in 1995, selected for definition study in 1996, and approved for development in 1997.[3][13]

The WMAP was preceded by two missions to observe the CMB; (i) the Soviet RELIKT-1 that reported the upper-limit measurements of CMB anisotropies, and (ii) the U.S. COBE satellite that reported large-scale CMB fluctuations, and the ground-based and balloon experiments measuring the small-scale fluctuations in patches of sky: the Boomerang, the Cosmic Background Imager, and the Very Small Array. The WMAP is 45 times more sensitive, with 33 times the angular resolution of its COBE satellite predecessor.[2]

Spacecraft

The telescope's primary reflecting mirrors are a pair of Gregorian 1.4m x 1.6m dishes (facing opposite directions), that focus the signal onto a pair of 0.9m x 1.0m secondary reflecting mirrors. They are shaped for optimal performance: a carbon fibre shell upon a Korex core, thinly-coated with aluminium and silicon oxide. The secondary reflectors transmit the signals to the corrugated feedhorns that sit on a focal plane array box beneath the primary reflectors.[1]

The receivers are polarization-sensitive differential radiometers measuring the difference between two telescope beams. The signal is amplified with HEMT low-noise amplifiers. There are 20 feeds, 10 in each direction, from which a radiometer collects a signal; the measure is the difference in the sky signal from opposite directions. The directional separation azimuth is 180 degrees; the total angle is 141 degrees.[1] To avoid collecting Milky Way galaxy foreground signals, the WMAP uses five discrete radio frequency bands, from 23 GHz to 94 GHz.[1]

Properties of WMAP at different frequencies[1]
Property K-band Ka-band Q-band V-band W-band
Central wavelength (mm) 13 9.1 7.3 4.9 3.2
Central frequency (GHz) 23 33 41 61 94
Bandwidth (GHz) 5.5 7.0 8.3 14.0 20.5
Beam size (arcminutes) 52.8 39.6 30.6 21 13.2
Number of radiometers 2 2 4 4 8
System temperature (K) 29 39 59 92 145
Sensitivity (mK s^{1/2}) 0.8 0.8 1.0 1.2 1.6

The WMAP's base is a 5.0m-diameter solar panel array that keeps the instruments in shadow during CMB observations, (by keeping the craft constantly angled at 22 degrees, relative to the sun). Upon the array sit a bottom deck (supporting the warm components) and a top deck. The telescope's cold components: the focal-plane array and the mirrors, are separated from the warm components with a cylindrical, 33 cm-long thermal isolation shell atop the deck.[1]

Passive thermal radiators cool the WMAP to ca. 90 degrees K; they are connected to the low-noise amplifiers. The telescope consumes 419 W of power. The available telescope heaters are emergency-survival heaters, and there is a transmitter heater, used to warm them when off. The WMAP spacecraft's temperature is monitored with platinum resistance thermometers.[1]

The WMAP's calibration is effected with the CMB dipole and measurements of Jupiter; the beam patterns are measured against Jupiter. The telescope's data are relayed daily via a 2 GHz transponder providing a 667kbit/s downlink to a 70m Deep Space Network telescope. The spacecraft has two transponders, one a redundant back-up; they are minimally active — ca. 40 minutes daily — to minimize radio frequency interference. The telescope's position is maintained, in its three axes, with three reaction wheels, gyroscopes, two star trackers and sun sensors, and is steered with eight hydrazine thrusters.[1]

Launch, trajectory, and orbit

The WMAP spacecraft arrived at the Kennedy Space Center on 20 April 2001. After being tested for two months, it was launched via Delta II 7425 rocket on 30 June 2001.[2][3] It began operating on its internal power five minutes before its launching, and so continued operating until the solar panel array deployed. The WMAP was activated and monitored while it cooled. On 2 July, it began working, first with in-flight testing (from launching until 17 August), then began constant, formal work.[2] Afterwards, it effected three Earth-Moon phase loops, measuring its sidelobes, then flew by the Moon on 30 July, enroute to the Sun-Earth L2 Lagrangian point, arriving there on 1 October 2001, becoming, thereby, the first CMB observation mission permanently posted there.[3]

The spacecraft's location at Lagrange 2, (1.5 million kilometers from Earth) minimizes the amount of contaminating solar, terrestrial, and lunar emissions registered, and thermally stabilizes it. To view the entire sky, without looking to the sun, the WMAP traces a path around L2 in a Lissajous orbit ca. 1.0 degree to 10 degrees,[1] with a 6-month period.[3] The telescope rotates once every 2 minutes, 9 seconds" (0.464 rpm) and precesses at the rate of 1 revolution per hour.[1] WMAP measures the entire sky every six months, and completed its first, full-sky observation in April 2002.[13]

Foreground radiation subtraction

The WMAP observes in five frequencies, permitting the measurement and subtraction of foreground contamination (from the Milky Way and extra-galactic sources) of the CMB. The main emission mechanisms are synchrotron radiation and free-free emission (dominating the lower frequencies), and astrophysical dust emissions (dominating the higher frequencies). The spectral properties of these emissions contribute different amounts to the five frequencies, thus permitting their identification and subtraction.[1]

Foreground contamination is removed in several ways. First, subtract extant emission maps from the WMAP's measurements; second, use the components' known, spectral values to identify them; third, simultaneously fit the position and spectra data of the foreground emission, using extra data sets. Foreground contamination also is reduced by using only the full-sky map portions with the least foreground contamination, whilst masking the remaining map portions.[1]

The five-year models of foreground emission, at different frequencies. Red = Synchrotron; Green = free-free; Blue = thermal dust.
23 GHz 33 GHz 41 GHz 61 GHz 94 GHz

Measurements and discoveries

One-year data release

On 11 February 2003, based upon one year's worth of WMAP data, NASA published the latest calculated age, composition, and image of the universe to date, that "contains such stunning detail, that it may be one of the most important scientific results of recent years"; the data surpass previous CMB measurements.[6]

Based upon the Lambda-CDM model, the WMAP team produced cosmological parameters from the WMAP's first-year results. Three sets are given below; the first and second sets are WMAP data; the difference is the addition of spectral indices, predictions of some inflationary models. The third data set combines the WMAP constraints with those from other CMB experiments (ACBAR and CBI), and constraints from the 2dF Galaxy Redshift Survey and Lyman alpha forest measurements. Note that there are degenerations among the parameters, the most significant is between n_s and \tau; the errors given are at 68% confidence.[14]

Best-fit cosmological parameters from WMAP one-year results[14]
Parameter Symbol Best fit (WMAP only) Best fit (WMAP, extra parameter) Best fit (all data)
Hubble's constant ( kmMpc·s ) H_0 72±5 70±5 71+4
−3
Baryonic content \Omega_b h^2 0.024±0.001 0.023±0.002 0.0224±0.0009
Matter content \Omega_m h^2 0.14±0.02 0.14±0.02 0.135+0.008
−0.009
Optical depth to reionization \tau 0.166+0.076
−0.071
0.20±0.07 0.17±0.06
Amplitude A 0.9±0.1 0.92±0.12 0.83+0.09
−0.08
Scalar spectral index n_s 0.99±0.04 0.93+0.07
−0.07
0.93±0.03
Running of spectral index dn_s / dk −0.047±0.04 −0.031+0.016
−0.017
Fluctuation amplitude at 8h−1 Mpc \sigma_8 0.9±0.1 0.84±0.04
Age of the universe (Ga) t_0 13.4±0.3 13.7±0.2
Total density of the universe \Omega_{tot} 1.02±0.02

Using the best-fit data and theoretical models, the WMAP team determined the times of important universal events, including the redshift of reionization, 17±4; the redshift of decoupling, 1,089±1 (and the universe's age at decoupling, 379+8
−7
 ka
); and the redshift of matter/radiation equality, 3,233+194
−210
. They determined the thickness of the surface of last scattering to be 195±2 in redshift, or 118+3
−2
 ka
. They determined the current density of baryons, 2.5±0.1×10−7 cm−1, and the ratio of baryons to photons, 6.1+0.3
−0.2
×10−10
. The WMAP's detection of an early reionization excluded warm dark matter.[14]

The team also examined Milky Way emissions at the WMAP frequencies, producing a 208-point source catalogue. Also, they observed the Sunyaev-Zel'dovich effect at 2.5 σ the strongest source is the Coma cluster.[12]

Three-year data release

The three-year WMAP data were released on 17 March 2006. The data included temperature and polarization measurements of the CMB, which provided further confirmation of the standard flat Lambda-CDM model and new evidence in support of inflation.

The 3-year WMAP data alone shows that the universe must have dark matter. Results were computed both only using WMAP data, and also with a mix of parameter constraints from other instruments, including other CMB experiments (ACBAR, CBI and BOOMERANG), SDSS, the 2dF Galaxy Redshift Survey, the Supernova Legacy Survey and constraints on the Hubble constant from the Hubble Space Telescope.[15]

Best-fit cosmological parameters from WMAP three-year results[15]
Parameter Symbol Best fit (WMAP only)
Hubble's constant ( kmMpc·s ) H_0 73.2+3.1
−3.2
Baryonic content \Omega_b h^2 0.0229±0.00073
Matter content \Omega_m h^2 0.1277+0.0080
−0.0079
Optical depth to reionization [a] \tau 0.089±0.030
Scalar spectral index n_s 0.958±0.016
Fluctuation amplitude at 8h−1 Mpc \sigma_8 0.761+0.049
−0.048
Age of the universe (Ga) t_0 13.73+0.16
−0.15
Tensor-to-scalar ratio [b] r < 0.65

[a] ^ Optical depth to reionization improved due to polarization measurements.[16]
[b] ^ < 0.30 when combined with SDSS data. No indication of non-gaussianity.[15]

Five-year data release

The five-year WMAP data were released on 28 February 2008. The data included new evidence for the cosmic neutrino background, evidence that it took over half a billion years for the first stars to reionize the universe, and new constraints on cosmic inflation.[17]

The improvement in the results came from both having an extra 2 years of measurements (the data set runs between midnight on 10 August 2001 to midnight of 9 August 2006), as well as using improved data processing techniques and a better characterization of the instrument, most notably of the beam shapes. They also make use of the 33 GHz observations for estimating cosmological parameters; previously only the 41 GHz and 61 GHz channels had been used. Finally, improved masks were used to remove foregrounds.[7]

Improvements to the spectra were in the 3rd acoustic peak, and the polarization spectra.[7]

The measurements put constraints on the content of the universe at the time that the CMB was emitted; at the time 10% of the universe was made up of neutrinos, 12% of atoms, 15% of photons and 63% dark matter. The contribution of dark energy at the time was negligible.[17] It also constrained the content of the present-day universe; 4.6% atoms, 23% dark matter and 72% dark energy.[7]

The WMAP five-year data was combined with measurements from Type Ia supernova (SNe) and Baryon acoustic oscillations (BAO).[7]

The elliptical shape of the WMAP skymap is the result of a Mollweide projection.[18]

Best-fit cosmological parameters from WMAP five-year results[7]
Parameter Symbol Best fit (WMAP only) Best fit (WMAP + SNe + BAO)
Hubble's constant ( kmMpc·s ) H_0 71.9+2.6
−2.7
70.5±1.3
Baryonic content \Omega_b h^2 0.02273±0.00062 0.02267+0.00058
−0.00059
Cold dark matter content \Omega_c h^2 0.1099±0.0062 0.1131±0.0034
Dark energy content \Omega_\Lambda 0.742±0.030 0.726±0.015
Optical depth to reionization \tau 0.087±0.017 0.084±0.016
Scalar spectral index n_s 0.963+0.014
−0.015
0.960±0.013
Running of spectral index dn_s / dlnk −0.037±0.028 −0.028±0.020
Fluctuation amplitude at 8h−1 Mpc \sigma_8 0.796±0.036 0.812±0.026
Age of the universe (Ga) t_0 13.69±0.13 13.72±0.12
Total density of the universe \Omega_{tot} 1.099+0.100
−0.085
1.0050+0.0060
−0.0061
Tensor-to-scalar ratio r < 0.43 < 0.22

The data puts a limits on the value of the tensor-to-scalar ratio, r < 0.22 (95% certainty), which determines the level at which gravitational waves affect the polarization of the CMB, and also puts limits on the amount of primordial non-gaussianity. Improved constraints were put on the redshift of reionization, which is 10.9±1.4, the redshift of decoupling, 1,090.88±0.72 (as well as age of universe at decoupling, 376.971+3.162
−3.167
 ka
) and the redshift of matter/radiation equality, 3,253+89
−87
.[7]

The extragalactic source catalogue was expanded to include 390 sources, and variability was detected in the emission from Mars and Saturn.[7]

The five-year maps at different frequencies from WMAP with foregrounds (the red band)
23 GHz 33 GHz 41 GHz 61 GHz 94 GHz

Seven-year data release

The Seven-year WMAP data were released on 26 January 2010. According to this data the Universe is 13.75 ±0.11 bln. years old. As part of this release, claims for inconsistencies with the standard model were investigated.[19] Most were shown not to be statistically significant, and likely due to a posteriori selection (where one sees a weird deviation, but fails to consider properly how hard one has been looking; a deviation with 1:1000 likelihood will typically be found if one tries one thousand times). For the deviations that do remain, there are no alternative cosmological ideas (for instance, there seem to be correlations with the ecliptic pole). It seems most likely these are due to other effects, with the report mentioning uncertainties in the precise beam shape and other possible small remaining instrumental and analysis issues.

The other confirmation of major significance is of the total amount of matter/energy in the Universe in the form of Dark Energy - 72.8% (within 1.6%) as non 'particle' background, and Dark Matter - 22.7% (within 1.4%) of non baryonic (sub atomic) 'particle' energy. This leaves matter, or baryonic particles (atoms) at only 4.56% (within 0.16%).

Best-fit cosmological parameters from WMAP seven-year results[20]
Parameter Symbol Best fit (WMAP only) Best fit (WMAP + BAO[21] + H0[22])
Age of the universe (Ga) t_0 13.75±0.13 13.75±0.11
Hubble's constant ( kmMpc·s ) H_0 71.0±2.5 70.4+1.3
−1.4
Baryon density \Omega_b 0.0449±0.0028 0.0456±0.0016
Physical baryon density \Omega_b h^2 0.02258+0.00057
−0.00056
0.02260±0.00053
Dark matter density \Omega_c 0.222±0.026 0.227±0.014
Physical dark matter density \Omega_c h^2 0.1109±0.0056 0.1123±0.0035
Dark energy density \Omega_\Lambda 0.734±0.029 0.728+0.015
−0.016
Fluctuation amplitude at 8h−1 Mpc \sigma_8 0.801±0.030 0.809±0.024
Scalar spectral index n_s 0.963±0.014 0.963±0.012
Reionization optical depth \tau 0.088±0.015 0.087±0.014
Parameters for extended models (parameters place limits on deviations from the Lambda-CDM model[20])
Parameter Symbol Best fit (WMAP only) Best fit (WMAP + BAO[21] + H0[22])
Total density of the universe \Omega_{tot} 1.080+0.093
−0.071
1.0023+0.0056
−0.0054
Tensor-to-scalar ratio, k0 = 0.002 Mpc−1 r < 0.36 (95% CL) < 0.24 (95% CL)
Running of spectral index, k0 = 0.002 Mpc−1 dn_s / dlnk −0.034±0.026 −0.022±0.020
The Seven-year maps at different frequencies from WMAP with foregrounds (the red band)
23 GHz 33 GHz 41 GHz 61 GHz 94 GHz

Main result

The main result of the mission is contained in the various oval maps of the CMB spectrum over the years. These oval images present the temperature distribution gained by the WMAP team from the observations by the telescope of the mission. Measured is the temperature obtained from a Planck's law interpretation of the microwave background. The oval map covers the whole sky. The results describe the state of the universe only some hundred-thousand years after the "big bang", which happened roughly 13.7 billion years before our time. The microwave background is very homogeneous in temperature (the relative variations from the mean, which presently is still 2.7 kelvins, are only of the order of 5x10-5. The temperature variations corresponding to the local directions are presented through different colours (the "red" directions are hotter, the "blue" directions cooler than the average).

Follow-on missions and future measurements

The original timeline for WMAP gave it two years of observations; these were completed by September 2003. Mission extensions were granted in 2002, 2004, 2006, and 2008 giving the spacecraft a total of 9 observing years, which ended August 2010 [3] and in October 2010 the spacecraft was moved to a special graveyard orbit.[11] outside of L2, in which it orbits the sun 14 times every 15 years.

The Planck spacecraft, launched on the 14th of May 2009, also measures the CMB and aims to refine the measurements made by WMAP, both in total intensity and polarization. Various ground- and balloon-based instruments have also made CMB contributions or are being constructed to do so. Many are aimed at searching for the B-mode polarization expected from the simplest models of nflation, including EBEX, Spider, BICEP2, Keck, QUIET, CLASS, SPTpol and others.

See also

References

Footnotes

  1. ^ a b c d e f g h i j k l m n o p Bennett et al. (2003a)
  2. ^ a b c d Limon et al. (2008)
  3. ^ a b c d e f g "WMAP News: Facts". NASA. 22 April 2008. http://map.gsfc.nasa.gov/news/facts.html. Retrieved 27 April 2008. 
  4. ^ "Wilkinson Microwave Anisotropy Probe: Overview". Legacy Archive for Background Data Analysis (LAMBDA). Greenbelt, Maryland: NASA's High Energy Astrophysics Science Archive Research Center (HEASARC). August 4, 2009. http://lambda.gsfc.nasa.gov/product/map/current/. Retrieved 24 September 2009. "The WMAP (Wilkinson Microwave Anisotropy Probe) mission is designed to determine the geometry, content, and evolution of the universe via a 13 arcminute FWHM resolution full sky map of the temperature anisotropy of the cosmic microwave background radiation." 
  5. ^ "Tests of Big Bang: The CMB". Universe 101: Our Universe. NASA. July, 2009. http://map.gsfc.nasa.gov/universe/bb_tests_cmb.html. Retrieved 24 September 2009. "Only with very sensitive instruments, such as COBE and WMAP, can cosmologists detect fluctuations in the cosmic microwave background temperature. By studying these fluctuations, cosmologists can learn about the origin of galaxies and large scale structures of galaxies and they can measure the basic parameters of the Big Bang theory." 
  6. ^ a b c "New image of infant universe reveals era of first stars, age of cosmos, and more". NASA / WMAP team. 11 February 2003. Archived from the original on 27 February 2008. http://web.archive.org/web/20080227175308/http://www.gsfc.nasa.gov/topstory/2003/0206mapresults.html. Retrieved 27 April 2008. 
  7. ^ a b c d e f g h i Hinshaw et al. (2009)
  8. ^ Seife (2003)
  9. ^ ""Super Hot" Papers in Science". in-cites. October 2005. http://www.in-cites.com/hotpapers/shp/1-50.html. Retrieved 26 April 2008. 
  10. ^ "Announcement of the Shaw Laureates 2010". http://www.shawprize.org/en/shawprize2010/announcement/announcement.html. 
  11. ^ a b "MISSION COMPLETE! WMAP FIRES ITS THRUSTERS FOR THE LAST TIME". http://news.discovery.com/space/mission-complete-wmap-fires-its-thrusters-for-the-last-time.html. 
  12. ^ a b Bennett et al. (2003b)
  13. ^ a b "WMAP News: Events". NASA. 17 April 2008. http://map.gsfc.nasa.gov/news/events.html. Retrieved 27 April 2008. 
  14. ^ a b c Spergel et al. (2003)
  15. ^ a b c Spergel et al. (2007)
  16. ^ Hinshaw et al. (2007)
  17. ^ a b "WMAP Press Release — WMAP reveals neutrinos, end of dark ages, first second of universe". NASA / WMAP team. 7 March 2008. http://map.gsfc.nasa.gov/news/. Retrieved 27 April 2008. 
  18. ^ WMAP 1-year Paper Figures, Bennett, et al.
  19. ^ [1] Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?
  20. ^ a b Table 8 on p. 39 of Jarosik, N., et.al. (WMAP Collaboration). "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results" (PDF). nasa.gov. http://lambda.gsfc.nasa.gov/product/map/dr4/pub_papers/sevenyear/basic_results/wmap_7yr_basic_results.pdf. Retrieved 2010-12-04.  (from NASA's WMAP Documents page)
  21. ^ a b Percival, Will J. et.al. (February 2010). "Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample". Monthly Notices of the Royal Astronomical Society 401 (4): 2148–2168. arXiv:0907.1660. Bibcode 2010MNRAS.401.2148P. doi:10.1111/j.1365-2966.2009.15812.x. 
  22. ^ a b Riess, Adam G. et.al.. "A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder" (PDF). hubblesite.org. http://hubblesite.org/pubinfo/pdf/2009/08/pdf.pdf. Retrieved 2010-12-04. 

Primary sources

External links